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A convenient approach for preparing heterocycles is based on
the heteroatom as a tethering element and on an eventual cyclization
by C-C bond-forming reaction.1,2 Currently, many efforts in this
area are focused in searching for new processes involving reactive
organometallic species.3 Herein, we present preliminary results on
a metal-free preparation of representative heterocyclic skeletons,
where the key cyclization step is an intramolecular arylation reaction
of a heteroatom-linked alkene promoted by iodonium ion. Along
this study IPy2BF4 was used as the source of iodonium ion4 that
efficiently promotes C-C bond-forming reactions,5 affording
iodinated 3,4-dihydro-2H-benzopyranes (chromans)6 and 1,2,3,4-
tetrahydroquinolines.7 When different allylphenyl ethers1 were
treated with IPy2BF4 and variable amounts of HBF4, a series of
reactions took place, leading diastereoselectively to chroman
skeletons. Interestingly, besides the expected carbocyclization to
heterocycles2, an unexpected selective rearrangement to chromans
3 was observed (Table 1).

For internal alkenes, the reaction temperature provides a con-
venient control over the reaction manifold. At-40 °C, diastereo-
selective cyclizations took place, furnishing heterocycles2. Inter-
estingly, at-90 °C chromans3 were formed through a selective
rearrangement-cyclization sequence. From1b this was the only
product observed at-90 °C, while for 1a it was obtained as a
minor side product. Alternatively,3a was directly obtained from
cyclization of 1d (Scheme 1), showing that terminal alkenes do
not undergo rearrangement at that temperature.8

From the 1,1-disubstituted alkene1c, only 3c was accessible,
with no evidence for the formation of the corresponding2 even
when reactions at higher temperature were assayed.9 The same trend
was also confirmed when more challenging polycyclization reac-
tions were tested. From geraniol, the corresponding phenyl ether,
1f, featured a trisubstituted alkene at the allyloxy moiety. Thus,
the resulting heterocycle4 arises from a selective sequence
comprising rearrangement and formation, in this case, of two C-C
bonds. Interestingly,4 was also prepared in a faster and direct
reaction from1g (Scheme 2).

This methodology can be implemented to prepare nitrogenated
heterocyclic compounds.N-Protected-N-allylaniline derivatives10 5
were smoothly cyclized to yield 1,2,3,4-tetrahydroquinolines6 in
a stereoselective way (Scheme 3). No evidence was obtained for
the formation of related heterocyclic structures involving additional
rearrangement of the allyl moiety, even when the reaction temper-
ature was changed.

A relevant extension of this methodology is represented by the
diastereoselective polycyclization sequence of the related nitrogen-
containing precursor5e that furnishes8 in a straightforward
manner11 (Scheme 4).

Simple homoallyl phenyl ether9 is also an adequate partner for
this process. Its reaction with the iodonium system led to chroman
10 in 76% yield, in this case as the result of an exocyclization

mode. Upon dehydroiodination reaction, the exocyclic alkene11
was fomed in 83% yield, as the sole reaction product (Scheme 5).12

As a proposal, a reaction path that explains the formation of the
observed compounds might reasonably invoke formation of iodo-
nium ions, for which some NMR evidence has been gathered.13

Besides its assumption, additional involvement of readily available
lone pairs of electrons at the neighboring heteroatom14 might

Table 1. Synthesisa of Chromans 2 and 3

1 HBF4 (equiv)
t b

(h)
T

(°C) 2 3
yieldc

(%)

1a 1 30 -40 2a 92
1a 1 72 -85 2a 3a 64(10)d

1b 1.5 3 -40 2b 95
1b 1.5 12 -90 3b 95
1c 3 6 -90 3c 85

a Reactions conducted in CH2Cl2, using IPy2BF4 as the iodonium source
(1.1 equiv).b Time for the complete disappearance of1. c Isolated yield of
the chroman derivative.d Within brackets, isolated yield for3a.

Scheme 1. Metal-Free Arylation of Terminal Alkenes To Give
Chromans

Scheme 2. Iodonium-Triggered Polycyclizations of Allylphenyl
Ethers

Scheme 3. Iodonium-Promoted Tetrahydroquinoline Derivatives
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account well for the stereoselectivity of the in situ observed
rearrangement and/or iodination-cyclization events, as depicted in
Scheme 6.15

Thus, the possibility of an equilibrium among intermediate
speciesA, B, and C, might play a crucial role to explain some
relevant facts accompanying the reported synthesis of chromans,
namely an unusual skeletal isomerization,16 besides the observed
regio- and stereoselectivity.17,18

In summary, the reported results show not only promising and
differentiating signs but also a nice structural complement to the
use of transition metals to assemble relevant heterocyclic cores.
Well-established chemistry of carbon-iodine bond would be a nice
addition to this strategy for easily preparing derivatives of bioactive
basic cores. Overall, simple synthetic tools are to be considered
and tested, resulting in yet unexplored attractive preparative
alternatives to obtain valuable compounds from readily available
starting materials.
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